Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542326

RESUMO

4-[5-(Naphthalen-1-ylmethyl)-1,3,4-thiadiazol-2-yl]benzene-1,3-diol (NTBD) was extensively studied through stationary UV-vis absorption and fluorescence measurements in various solvents and solvent mixtures and by first-principles quantum chemical calculations. It was observed that while in polar solvents (e.g., methanol) only a single emission band emerged; the analyzed 1,3,4-thiadiazole derivative was capable of producing dual fluorescence signals in low polarity solvents (e.g., n-hexane) and certain solvent mixtures (e.g., methanol/water). As clearly follows from the experimental spectroscopic studies and theoretical modeling, the specific emission characteristic of NTBD is triggered by the effect of enol → keto excited-state intramolecular proton transfer (ESIPT) that in the case of solvent mixture is reinforced by aggregation of thiadiazole molecules. Specifically, the restriction of intramolecular rotation (RIR) due to environmental hindrance suppresses the formation of non-emissive twisted intramolecular charge transfer (TICT) excited keto* states. As a result, this particular thiadiazole derivative is capable of simultaneously producing both ESIPT and aggregation-induced emission (AIE).


Assuntos
Metanol , Tiadiazóis , Espectrometria de Fluorescência , Solventes/química , Prótons
2.
Chempluschem ; : e202300717, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38406894

RESUMO

Two BODIPY-C60 -peptide assemblies were synthesized by CuAAC reactions of BODIPY-C60 dyads and a helical peptide functionalized with a terminal alkyne group and an azide group, respectively. The helical peptide within these assemblies was functionalized at its other end by a disulfide group, allowing formation of self-assembled monolayers (SAMs) on gold surfaces. Characterizations of these SAMs, as well as those of reference molecules (BODIPY-C60 -alkyl, C60 -peptide and BODIPY-peptide), were carried out by PM-IRRAS and cyclic voltammetry. BODIPY-C60 -peptide SAMs are more densely packed than BODIPY-C60 -alkyl and BODIPY-peptide based SAMs. These findings were attributed to the rigid peptide helical conformation along with peptide-peptide and C60 -C60 interactions within the monolayers. However, less dense monolayers were obtained with the target assemblies compared to the C60 -peptide, as the BODIPY entity likely disrupts organization within the monolayers. Finally, electron transfer kinetics measurements by ultra-fast electrochemistry experiments demonstrated that the helical peptide is a better electron mediator in comparison to alkyl chains. This property was exploited along with those of the BODIPY-C60 dyads in a photo-current generation experiment by converting the resulting excited and/or charge separated states from photo-illumination of the dyad into electrical energy.

3.
Photochem Photobiol Sci ; 22(7): 1655-1671, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36934363

RESUMO

Flavins are a unique class of compounds that combine the features of singlet oxygen generators and redox-dependent fluorophores. From a broad family of flavin derivatives, deazaalloxazines are significantly underdeveloped from the point of view of photophysical properties. Herein, we report photophysics of 5-deazaalloxazine (1a) in water, acetonitrile, and some other solvents. In particular, triplet excited states of 1a in water and in acetonitrile were investigated using ultraviolet-visible (UV-Vis) transient absorption spectroscopy. The measured triplet lifetimes for 1a were all on the microsecond time scale (≈ 60 µs) in deoxygenated solutions. The quantum yield of S1 → T1 intersystem crossing for 1a in water was 0.43 based on T1 energy transfer from 1a to indicaxanthin (5) acting as acceptor and on comparative actinometric measurements using benzophenone (6). 1a was an efficient photosensitizer for singlet oxygen in aerated solutions, with quantum yields of singlet oxygen in methanol of about 0.76, compared to acetonitrile ~ 0.74, dichloromethane ~ 0.64 and 1,2-dichloroethane ~ 0.54. Significantly lower singlet oxygen quantum yields were obtained in water and deuterated water (Ð¤Δ ~ 0.42 and 0.44, respectively). Human red blood cells (RBC) were used as a cell model to study the antioxidant capacity in vitro and cytotoxic activity of 1a. Fluorescence-lifetime imaging microscopy (FLIM) data were analyzed by fluorescence lifetime parameters and distribution for different parts of the emission spectrum. Comparison of multidimensional fluorescent properties of RBC under physiological-like and oxidative-stress conditions in the presence and absence of 1a suggests its dual activity as probe and singlet-oxygen generator and opens up a pathway for using FLIM to analyze complex intracellular behavior of flavin-like compounds. These new data on structure-property relationship contribute to the body of information required for a rational design of flavin-based tools for future biological and biochemical applications.


Assuntos
Fármacos Fotossensibilizantes , Oxigênio Singlete , Humanos , Oxigênio Singlete/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Flavinas , Água/química , Compostos Orgânicos , Oxirredução
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 295: 122627, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-36963219

RESUMO

We applied transient absorption spectroscopy to study the early photodynamics in a system composed of CdTe quantum dots (QDs) and cytochrome c (Cyt c) protein. In the QDs and Cyt c mixtures, about 25 % of the excited QD electrons quickly relax (∼23 ps) to the ground state and roughly 75 % decay on slower time scale - mostly due to quenching by Cyt c. On the basis of the assumed model, we estimated the contribution of electron transfer and other mechanisms to this quenching. The primary quenching mechanism is probably energy transfer but electron transfer makes a significant contribution (∼8 %), resulting in photoreduction of Cyt c. The lifetime of one fraction of reduced Cyt c (35-90 %) is âˆ¼ 1 ms and the lifetime of the remaining fraction was longer than the âˆ¼ 50-ms time window of the experiment. We speculate that, in the former fraction, the back electron transfer from the reduced Cyt c to QDs occurs and the latter fraction of Cyt c is stably reduced.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Citocromos c/química , Pontos Quânticos/química , Compostos de Cádmio/química , Elétrons , Telúrio/química
5.
Sci Rep ; 12(1): 19159, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357476

RESUMO

In photochemistry the excited-state intramolecular proton transfer process (ESIPT) is often observed as a highly efficient singlet excited state depletion pathway, which in the presence of a strong intramolecular hydrogen bond may proceed on a subpicosecond time scale. The present work describes the suppression of unwanted transoid-trans isomer formation in photochromic 3H-naphthopyran derivatives by the introduction of a 5-hydroxy substituent. According to time-resolved spectroscopy experiments and excited-state ab initio calculations, transoid-cis → transoid-trans photoisomerization is reduced by a competitive ESIPT channel in nonpolar solvent (cyclohexane). Upon specific solute-solvent interactions (methanol, acetonitrile) the intramolecular hydrogen bond in the transoid-cis form is perturbed, favoring the internal conversion S1 → S0 process as photostabilizing channel.

6.
Biophys Rep (N Y) ; 2(3): 100072, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36425326

RESUMO

In all published photoactivation mechanisms of orange carotenoid protein (OCP), absorption of a single photon by the orange dark state starts a cascade of red-shifted OCP ground-state intermediates that subsequently decay within hundreds of milliseconds, resulting in the formation of the final red form OCPR, which is the biologically active form that plays a key role in cyanobacteria photoprotection. A major challenge in deducing the photoactivation mechanism is to create a uniform description explaining both single-pulse excitation experiments, involving single-photon absorption, and continuous light irradiation experiments, where the red-shifted OCP intermediate species may undergo re-excitation. We thus investigated photoactivation of Synechocystis OCP using stationary irradiation light with a biologically relevant photon flux density coupled with nanosecond laser pulse excitation. The kinetics of photoactivation upon continuous and nanosecond pulse irradiation light show that the OCPR formation quantum yield increases with photon flux density; thus, a simple single-photon model cannot describe the data recorded for OCP in vitro. The results strongly suggest a consecutive absorption of two photons involving a red intermediate with ≈100 millisecond lifetime. This intermediate is required in the photoactivation mechanism and formation of the red active form OCPR.

7.
Sci Rep ; 12(1): 13420, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927398

RESUMO

Two graphene oxide nanoassemblies using 5-(4-(aminophenyl)-10,15,20-triphenylporphyrin (TPPNH2) were fabricated by two synthetic methods: covalent (GO-CONHTPP) and noncovalent bonding. GO-CONHTPP was achieved through amide formation at the periphery of GO sheets and the hybrid material was fully characterized by FTIR, XPS, Raman spectroscopy, and SEM. Spectroscopic measurements together with theoretical calculations demonstrated that assembling TPPNH2 on the GO surface in DMF-H2O (1:2, v/v) via non-covalent interactions causes changes in the absorption spectra of porphyrin, as well as efficient quenching of its emission. Interestingly, covalent binding to GO does not affect notably neither the porphyrin absorption nor its fluorescence. Theoretical calculations indicates that close proximity and π-π-stacking of the porphyrin molecule with the GO sheet is possible only for the non-covalent functionalization. Femtosecond pump-probe experiments revealed that only the non-covalent assembly of TPPNH2 and GO enhances the efficiency of the photoinduced electron transfer from porphyrin to GO. In contrast to the non-covalent hybrid, the covalent GO-CONHTPP material can generate singlet oxygen with quantum yields efficiency (ΦΔ = 0.20) comparable to that of free TPPNH2 (ΦΔ = 0.26), indicating the possible use of covalent hybrid materials in photodynamic/photothermal therapy. The spectroscopic studies combined with detailed quantum-chemical analysis provide invaluable information that can guide the fabrication of hybrid materials with desired properties for specific applications.

8.
Biophys J ; 121(15): 2849-2872, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35794830

RESUMO

The orange carotenoid protein (OCP) is a photoactive protein involved in cyanobacterial photoprotection by quenching of the excess of light-harvested energy. The photoactivation mechanism remains elusive, in part due to absence of data pertaining to the timescales over which protein structural changes take place. It also remains unclear whether or not oligomerization of the dark-adapted and light-adapted OCP could play a role in the regulation of its energy-quenching activity. Here, we probed photoinduced structural changes in OCP by a combination of static and time-resolved X-ray scattering and steady-state and transient optical spectroscopy in the visible range. Our results suggest that oligomerization partakes in regulation of the OCP photocycle, with different oligomers slowing down the overall thermal recovery of the dark-adapted state of OCP. They furthermore reveal that upon non-photoproductive excitation a numbed state forms, which remains in a non-photoexcitable structural state for at least ≈0.5 µs after absorption of a first photon.


Assuntos
Proteínas de Bactérias , Cianobactérias , Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo
9.
Sci Rep ; 12(1): 10781, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750785

RESUMO

3,3-Diphenylbenzo[f]chromene (1) represents an important architectural platform for photochromic systems. Since the practical utility of such chromophores is largely dependent upon the kinetics of coloration and decoloration, elucidating the mechanistic details of these processes is of great value. Toward this end, we studied the photochromic reaction of (3-(2-methoxyphenyl)-3-phenyl-3H-benzo[f]chromene (2) by both time-resolved UV-vis and mid-IR spectroscopies. We found that irradiation of 2 at 365 nm generates long-lived colored transoid-cis isomers with lifetimes of 17.1 s and 17.5 min (at 21 °C) and even longer-lived transoid-trans isomers with a lifetime of 16 h. These experimental results were supplemented with ab initio ground-state and excited-state calculations, and the resulting theoretical interpretation may be useful for the design of new photochromic systems with optimized photofunctionality.

10.
Biochim Biophys Acta Bioenerg ; 1863(7): 148584, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35752265

RESUMO

The orange carotenoid protein (OCP) is a photoactive protein involved in cyanobacterial photoprotection. Here, we report on the functional, spectral and structural characteristics of the peculiar Planktothrix PCC7805 OCP (Plankto-OCP). We show that this OCP variant is characterized by higher photoactivation and recovery rates, and a stronger energy-quenching activity, compared to other OCP studied thus far. We characterize the effect of the functionalizing carotenoid and of his-tagging on these reactions, and identify the time scales on which these modifications affect photoactivation. The presence of a his-tag at the C-terminus has a large influence on photoactivation, thermal recovery and PBS-fluorescence quenching, and likewise for the nature of the carotenoid that additionally affects the yield and characteristics of excited states and the ns-s dynamics of photoactivated OCP. By solving the structures of Plankto-OCP in the ECN- and CAN-functionalized states, each in two closely-related crystal forms, we further unveil the molecular breathing motions that animate Plankto-OCP at the monomer and dimer levels. We finally discuss the structural changes that could explain the peculiar properties of Plankto-OCP.


Assuntos
Cianobactérias , Planktothrix , Proteínas de Bactérias/metabolismo , Carotenoides/metabolismo , Cianobactérias/metabolismo , Fluorescência
11.
JACS Au ; 2(5): 1084-1095, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35647603

RESUMO

A substantial number of Orange Carotenoid Protein (OCP) studies have aimed to describe the evolution of singlet excited states leading to the formation of a photoactivated form, OCPR. The most recent one suggests that 3 ps-lived excited states are formed after the sub-100 fs decay of the initial S2 state. The S* state, which has the longest reported lifetime of a few to tens of picoseconds, is considered to be the precursor of the first red photoproduct P1. Here, we report the ultrafast photodynamics of the OCP from Synechocystis PCC 6803 carried out using visible-near infrared femtosecond time-resolved absorption spectroscopy as a function of the excitation pulse power and wavelength. We found that a carotenoid radical cation can form even at relatively low excitation power, obscuring the determination of photoactivation yields for P1. Moreover, the comparison of green (540 nm) and blue (470 nm) excitations revealed the existence of an hitherto uncharacterized excited state, denoted as S∼, living a few tens of picoseconds and formed only upon 470 nm excitation. Because neither the P1 quantum yield nor the photoactivation speed over hundreds of seconds vary under green and blue continuous irradiation, this S∼ species is unlikely to be involved in the photoactivation mechanism leading to OCPR. We also addressed the effect of His-tagging at the N- or C-termini on the excited-state photophysical properties. Differences in spectral signatures and lifetimes of the different excited states were observed at a variance with the usual assumption that His-tagging hardly influences protein dynamics and function. Altogether our results advocate for the careful consideration of the excitation power and His-tag position when comparing the photoactivation of different OCP variants and beg to revisit the notion that S* is the precursor of photoactivated OCPR.

12.
Int J Mol Sci ; 23(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35563164

RESUMO

A film of ~40 layers of partially oriented photosystem I (PSI) complexes isolated from the red alga Cyanidioschyzon merolae formed on the conducting glass through electrodeposition was investigated by time-resolved absorption spectroscopy and chronoamperometry. The experiments were performed at a range of electric potentials applied to the film and at different compositions of electrolyte solution being in contact with the film. The amount of immobilized proteins supporting light-induced charge separation (active PSI) ranged from ~10%, in the absence of any reducing agents (redox compounds or low potential), to ~20% when ascorbate and 2,6-dichlorophenolindophenol were added, and to ~35% when the high negative potential was additionally applied. The origin of the large fraction of permanently inactive PSI (65-90%) was unclear. Both reducing agents increased the subpopulation of active PSI complexes, with the neutral P700 primary electron donor, by reducing significant fractions of the photo-oxidized P700 species. The efficiencies of light-induced charge separation in the PSI film (10-35%) did not translate into an equally effective generation of photocurrent, whose internal quantum efficiency reached the maximal value of 0.47% at the lowest potentials. This mismatch indicates that the vast majority of the charge-separated states in multilayered PSI complexes underwent charge recombination.


Assuntos
Elétrons , Complexo de Proteína do Fotossistema I , Transporte de Elétrons , Oxirredução , Complexo de Proteína do Fotossistema I/metabolismo , Substâncias Redutoras
13.
Photochem Photobiol Sci ; 21(9): 1573-1584, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35612713

RESUMO

Photophysical studies on a BODIPY-fullerene-distyryl BODIPY triad (BDP-C60-DSBDP) and its reference dyads (BODIPY-fullerene; BDP-C60 and distyryl BODIPY-fullerene; DSBDP-C60) are presented herein. In the triad, the association of the two chromophore units linked by a fullerene moiety leads to strong near UV-Visible light absorption from 300 to 700 nm. The triplet-excited state was observed upon visible excitation in all these assemblies, and shown to be localized on the C60 or BODIPY moieties. Using quantitative nanosecond transient absorption, we provide a complete investigation on the lifetime and formation quantum yield of the triplet-excited state. In the BDP-C60 dyad, the triplet excited state of C60 (τ = 7 ± 1 µs) was obtained with a quantum yield of 40 ± 8%. For the DSBDP-C60 dyad and BDP-C60-DSBDP triad, a longer-lived triplet excited state with a lifetime of around 250 ± 20 µs centered on the DSBDP moiety was formed, with respective quantum yields of 37 ± 8 and 20 ± 4%. Triplet-triplet annihilation up-conversion is characterized in the BDP-C60 dyad and the bichromophoric triad in the presence of perylene and DSBDP-monomer as respective annihilators. The photo-induced formation of a long-lived 3DSBDP* in the triad coupled with panchromatic light absorption offers potential applications as a heavy-atom-free organic triplet photosensitizer.


Assuntos
Fulerenos , Compostos de Boro/química , Fulerenos/química , Fármacos Fotossensibilizantes/química
14.
Photochem Photobiol Sci ; 21(3): 319-336, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35119621

RESUMO

Photosystem I (PSI) complexes isolated from three different species were electrodeposited on FTO conducting glass, forming a photoactive multilayer of the photo-electrode, for investigation of intricate electron transfer (ET) properties in such green hybrid nanosystems. The internal quantum efficiency of photo-electrochemical cells (PEC) containing the PSI-based photo-electrodes did not exceed ~ 0.5%. To reveal the reason for such a low efficiency of photocurrent generation, the temporal evolution of the transient concentration of the photo-oxidized primary electron donor, P+, was studied in aqueous suspensions of the PSI complexes by time-resolved absorption spectroscopy. The results of these measurements provided the information on: (1) completeness of charge separation in PSI reaction centers (RCs), (2) dynamics of internal charge recombination, and (3) efficiency of electron transfer from PSI to the electrolyte, which is the reaction competing with the internal charge recombination in the PSI RC. The efficiency of the full charge separation in the PSI complexes used for functionalization of the electrodes was ~ 90%, indicating that incomplete charge separation was not the main reason for the small yield of photocurrents. For the PSI particles isolated from a green alga Chlamydomonas reinhardtii, the probability of ET outside PSI was ~ 30-40%, whereas for their counterparts isolated from a cyanobacterium Synechocystis sp. PCC 6803 and a red alga Cyanidioschyzon merolae, it represented a mere ~ 4%. We conclude from the transient absorption data for the PSI biocatalysts in solution that the observed small photocurrent efficiency of ~ 0.5% for all the PECs analyzed in this study is likely due to: (1) limited efficiency of ET outside PSI, particularly in the case of PECs based on PSI from Synechocystis and C. merolae, and (2) the electrolyte-mediated electric short-circuiting in PSI particles forming the photoactive layer, particularly in the case of the C. reinhardtii PEC.


Assuntos
Complexo de Proteína do Fotossistema I , Synechocystis , Transporte de Elétrons , Elétrons , Complexo de Proteína do Fotossistema I/química , Recombinação Genética , Synechocystis/metabolismo
15.
J Phys Chem B ; 125(13): 3307-3320, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33760623

RESUMO

Colloidal quantum dots (QDs) are nanoparticles that are able to photoreduce redox proteins by electron transfer (ET). QDs are also able to transfer energy by resonance energy transfer (RET). Here, we address the question of the competition between these two routes of QDs' excitation quenching, using cadmium telluride QDs and cytochrome c (CytC) or its metal-substituted derivatives. We used both oxidized and reduced versions of native CytC, as well as fluorescent, nonreducible Zn(II)CytC, Sn(II)CytC, and metal-free porphyrin CytC. We found that all of the CytC versions quench QD fluorescence, although the interaction may be described differently in terms of static and dynamic quenching. QDs may be quenchers of fluorescent CytC derivatives, with significant differences in effectiveness depending on QD size. SnCytC and porphyrin CytC increased the rate of Fe(III)CytC photoreduction, and Fe(II)CytC slightly decreased the rate and ZnCytC presence significantly decreased the rate and final level of reduced FeCytC. These might be partially explained by the tendency to form a stable complex between protein and QDs, which promoted RET and collisional quenching. Our findings show that there is a net preference for photoinduced ET over other ways of energy transfer, at least partially, due to a lack of donors, regenerating a hole at QDs and leading to irreversibility of ET events. There may also be a common part of pathways leading to photoinduced ET and RET. The nature of synergistic action observed in some cases allows the hypothesis that RET may be an additional way to power up the ET.


Assuntos
Pontos Quânticos , Citocromos c , Transporte de Elétrons , Elétrons , Transferência de Energia
16.
J Phys Chem C Nanomater Interfaces ; 124(29): 15769-15780, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-33133329

RESUMO

Two noncovalent nanohybrids between cationic porphyrin (free-base TMPyP and zinc(II) ZnTMPyP) bearing cationic (N-methylpyridyl) groups and graphene oxide (GO) were constructed with the aim of generating a photocatalyst active for rhodamine B (RhB) degradation. The obtained materials were thoroughly characterized by steady-state and time-resolved absorption and emission methods, which indicated that metalation of the porphyrin with Zn(II) increases the affinity of the porphyrin toward the GO surface. Photocurrent experiment together with femtosecond transient absorption spectroscopy clearly showed the existence of electron transfer from the photoexcited porphyrin to GO. Both hybrid materials demonstrated higher photocatalytic activity toward RhB degradation as compared to GO; however, ZnTMPyP-GO exhibited more efficient performance (19% of RhB decomposition after 2 h of irradiation). Our data indicate that the presence of Zn(II) in the core of the porphyrin can promote charge separation in the ZnTMPyP-GO composites. The higher degradation rate seen with ZnTMPyP-GO as compared to the TMPyP-GO assemblies highlights the beneficial role of Zn(II)-metalation of the porphyrin ring.

17.
Int J Mol Sci ; 21(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105695

RESUMO

In the photochromic reactions of 3H-naphthopyrans, two colored isomers TC (transoid-cis) and TT (transoid-trans) are formed. In terms of optimized photo-switchable materials, synthetic efforts are nowadays evolving toward developing 3H-naphthopyran derivatives that would not be able to photoproduce the long-living transoid-trans, TT, photoproduct. The substitution with a methoxy group at position 10 results in significant reduction of the TT isomer formation yield. The TC photophysics responsible for TT suppression were revealed here using a combination of multi-scale time resolved absorption UV-vis spectroscopy and ab initio calculations. The substitution changes the TC excited-state potential energy landscape, the bicycle-pedal isomerization path is favored over the rotation around a single double bond. The bicycle-pedal path is aborted in halfway to TT formation due to S1→S0 internal conversion populating back the TC species in the ground electronic state. This is validated by a shorter TC S1 state lifetime for methoxy derivative in comparison to that of the parent-unsubstituted compound (0.47 ± 0.05 ps vs. 0.87 ± 0.09 ps) in cyclohexane.


Assuntos
Benzopiranos/química , Processos Fotoquímicos , Absorciometria de Fóton , Isomerismo , Modelos Químicos , Espectrofotometria Ultravioleta
18.
J Phys Chem B ; 124(42): 9396-9410, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32897728

RESUMO

A new donor-acceptor dyad composed of a BODIPY (4,4'-difluoro-4-bora-3a,4a-diaza-s-indacene) donor and a fullerene C60 acceptor has been synthesized and characterized. This derivative has been prepared using a clickable fullerene building block that bears an alkyne moiety and a maleimide unit. The post-functionalization of the maleimide group by a BODIPY thiol leads to a BODIPY-C60 dyad, leaving the alkyne moiety for further functional arrangement. On the basis of the combination of semi-empirical and density functional theory (DFT) calculations, spectroelectrochemical experiments, and steady-state and time-resolved spectroscopies, the photophysical properties of this new BODIPY-C60 dyad were thoroughly studied. By using semi-empirical calculations, the equilibrium of three conformations of the BODIPY-C60 dyad has been deduced, and their molecular orbital structures have been analyzed using DFT calculations. Two short fluorescence lifetimes were attributed to two extended conformers displaying variable donor-acceptor distances (17.5 and 20.0 Å). Additionally, the driving force for photoinduced electron transfer from the singlet excited state of BODIPY to the C60 moiety was calculated using redox potentials determined with electrochemical studies. Spectroelectrochemical measurements were also carried out to investigate the absorption profiles of radicals in the BODIPY-C60 dyad in order to assign the transient species in pump-probe experiments. Under selective photoexcitation of the BODIPY moiety, occurrences of both energy and electron transfers were demonstrated for the dyad by femtosecond and nanosecond transient absorption spectroscopies. Photoinduced electron transfer occurs in the folded conformer, while energy transfer is observed in extended conformers.

19.
Phys Chem Chem Phys ; 22(24): 13456-13466, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32519730

RESUMO

The present study explores the influence of graphene oxide (GO) on deactivation pathways of the excited states of zinc 5,10,15,20-tetrakis(4-(hydroxyphenyl))porphyrin (ZnTPPH). The interaction of light with free ZnTPPH molecules and with ZnTPPH molecules adsorbed on graphene oxide sheets was probed via UV-vis spectroscopy, fluorescence spectroscopy, femtosecond pump-probe technique and nanosecond flash photolysis. Formation of the ground-state ZnTPPH-GO complex in solution was monitored by the red-shift of the porphyrin Soret absorption band. It was found that Stern-Volmer fluorescence quenching can be described in terms of two different quenching regimes depending on the GO concentration. In addition, our comprehensive analysis of the steady-state and time-resolved emission experiments led to the conclusion that the observed quenching was entirely attributable to a static mechanism. Laser flash photolysis showed that the triplet lifetime of the ZnTPPH increased in the presence of GO from 174 µs to 292 µs, which is related to the decrease in the rate constant of a radiationless decay mechanism involving rotation of the peripheral hydroxyphenyl rings of the porphyrin. Femtosecond transient absorption spectroscopy demonstrated the presence of a fast photoinduced electron transfer from the singlet excited state of ZnTPPH to the GO sheets, as indicated by the formation of a porphyrin radical cation. Quantum chemical calculations were used to gain deeper insights into the nature of the electronically excited states in the free ZnTPPH as well as in the ZnTPPH-GO complex.

20.
Chemphyschem ; 21(13): 1402-1407, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32400916

RESUMO

Recent efforts in designing new 3H-naphthopyran derivatives have been focused on efficient coloration process with a short fading time of the colored transoid-cis TC isomer. It is desirable to avoid photoisomerization of TC leading to transoid-trans TT isomers in the photoreaction. Long lifetime of TT can hamper fast applications such as dynamic holographic materials and molecular actuators, the residual color is one of the serious issues for photochromic lenses. Herein we characterize the photophysical and photochemical channels of TC excited state deactivation competing with the unwanted TC→TT isomerization process. Transient absorption spectroscopy reveals a very short lifetime of the singlet excited TC (≈0.8 ps) and its deactivation channels as S1 →S0 internal conversion (major), intersystem crossing S1 →T1 , pyran ring formation, photoenolization and TC→TT isomerization. Computations support the S1 →S0 and T1 →S0 channels as responsible for photostabilization of the TC form.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...